Solved Examples on Quadratic Inequalities

Solve and Check all questions.
Write each solution in set notation and interval notation.
Show all work.

(1.) $-8x^2 + 800x \ge 0$


$ -8x^2 + 800x \ge 0 \\[3ex] -8(x^2 - 100x) \ge 0 \\[3ex] x^2 - 100x \le \dfrac{0}{-8} \\[5ex] x^2 - 100x \le 0 \\[3ex] x(x - 100) \le 0 \\[3ex] Assume:\;\;x(x - 100) = 0 \\[3ex] x = 0 \;\;\;OR\;\;\; x - 100 = 0 \\[3ex] x = 0 \;\;\;OR\;\;\; x = 100 \\[3ex] Test\;\;Intervals\;\;are: \\[3ex] x \lt 0 \\[3ex] 0 \le x \le 100 \\[3ex] x \gt 100 \\[3ex] $

Let:
x < 0
x = −1
0 ≤ x ≤ 100
x = 1
x > 0
x = 101
$x$ + +
$x - 100$ +
$x(x - 100)$ + +

Less than or equal to zero means nonnegative
Hence, the second test interval gives the solution of the inequality
Set Notation: {x | 0 ≤ x ≤ 100}
Interval Notation: [0, 100]

Check
[0, 100]
LHS RHS
$ -8x^2 + 800x \\[3ex] x = 3 \\[3ex] -8(3^2) + 800(3) \\[3ex] -72 + 2400 \\[3ex] 2328 $ 0
2328 ≥ 0
(2.) $-8p^2 + 800p \ge 10752$


$ -8p^2 + 800p \ge 10752 \\[3ex] -8p^2 + 800p - 10752 \ge 0 \\[3ex] -8(p^2 - 100p + 1344) \ge 0 \\[3ex] p^2 - 100p + 1344 \le \dfrac{0}{-8} \\[5ex] p^2 - 100p + 1344 \le 0 \\[3ex] (p - 16)(p - 84) \le 0 \\[3ex] Assume:\;\;(p - 16)(p - 84) = 0 \\[3ex] p - 16 = 0 \;\;\;OR\;\;\; p - 84 = 0 \\[3ex] p = 16 \;\;\;OR\;\;\; p = 84 \\[3ex] Test\;\;Intervals\;\;are: \\[3ex] p \lt 16 \\[3ex] 16 \le p \le 84 \\[3ex] p \gt 84 \\[3ex] $

Let:
p < 16
p = 0
16 ≤ p ≤ 84
p = 17
p > 84
p = 85
$p - 16$ + +
$p - 84$ +
$(p - 16)(p - 84)$ + +

Less than or equal to zero means nonnegative
Hence, the second test interval gives the solution of the inequality
Set Notation: {p | 16 ≤ p ≤ 84}
Interval Notation: [16, 84]

Check
[16, 84]
LHS RHS
$ -8p^2 + 800p \\[3ex] p = 20 \\[3ex] -8(20^2) + 800(20) \\[3ex] -8(400) + 16000 \\[3ex] -3200 + 16000 \\[3ex] 12,800 $ 10752
12800 ≥ 10752
(3.)


(4.)


(5.)


(6.)


(7.)

(8.)

(9.)


(10.)


(11.)


(12.)


(13.)

(14.)


(15.)


(16.)


(17.)


(18.)